
A continuous time random walk approach to the

stream transport of solutes

F. Boano,1 A. I. Packman,2 A. Cortis,3 R. Revelli,1 and L. Ridolfi1

Received 24 March 2007; revised 7 June 2007; accepted 17 July 2007; published 24 October 2007.

[1] The transport of solutes in rivers is influenced by the exchange of water between
the river and the underlying hyporheic zone. The residence times of solutes in the
hyporheic zone are typically much longer than traveltimes in the stream, resulting in a
significant delay in the downstream propagation of solutes. A new model for this process
is proposed here on the basis of the continuous time random walk (CTRW) approach.
The CTRW is a generalization of the classic random walk that can include arbitrary
distributions of waiting times, and it is particularly suited to deal with the long residence
times arising from hyporheic exchange. Inclusion of suitable hyporheic residence time
distributions in the CTRW leads to a generalized advection-dispersion equation for in-
stream concentration breakthrough curves that includes the effects of specific hyporheic
exchange processes. Here examples are presented for advective hyporheic exchange
resulting from regular and irregular series of bedforms. A second major advantage of the
CTRW approach is that the combined effects of different processes affecting overall
downstream transport can be incorporated in the model by convolving separate waiting
time distributions for each relevant process. The utility of this approach is illustrated
by analyzing the effects of local-scale sediment heterogeneity on bedform-induced
hyporheic exchange. The ability to handle arbitrarily wide residence time distributions and
the ability to assess the combined effects of multiple transport processes makes the CTRW
model framework very useful for the study of solute transport problems in rivers. The
model presented here can be easily extended to represent different types of surface-
subsurface exchange processes and the transport of both conservative and nonconservative
substances in rivers.
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1. Introduction

[2] In his seminal work, Taylor [1954] gave a mathemat-
ical description of the basic processes that govern the
transport of dissolved substances in flowing fluids. The
core of Taylor’s work lies in the fundamental concept of
shear dispersion, which involves mixing due to spatial
variability in the flow field. This process produces a
progressive spreading of dissolved and suspended substan-
ces that causes the variance of the concentration distribution
to increase with time. More precisely, Taylor showed that,
after a sufficient mixing distance, the variance grows
linearly and the concentration distribution then follows
Fick’s law of diffusion

q ¼ �KrC; ð1Þ

where q is the mass flux per unit area, K is the dispersion
coefficient, and C is the average concentration over the
cross section. Taylor’s model for longitudinal solute
transport is commonly referred to as the advection-
dispersion equation (ADE). For the case of a uniform
stream cross section, this can be written as

@C

@t
þ U

@C

@x
¼ K

@2C

@x2
; ð2Þ

where t is time, x is the longitudinal position, and U is the
average velocity over the cross section. The ADE has
routinely been employed for the study of dispersion
problems in rivers [e.g., Yotsukura et al., 1970; Fischer et
al., 1979; Schnoor, 1996, and citations therein].
[3] When classical theory for shear dispersion has been

applied to rivers, the river bed has normally been assumed
to be impermeable. However, numerous observations have
demonstrated that there is substantial water flux across
stream channel boundaries [e.g., Bencala and Walters,
1983; Thibodeaux and Boyle, 1987; Harvey and Wagner,
2000; Packman and Bencala, 2000], and the resulting
transport of dissolved solutes and suspended particles plays
an important role in riverine ecosystems [e.g., Brunke and
Gonser, 1997; Boulton et al., 1998; Jones and Mulholland,
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2000; Hancock et al., 2005]. The velocity field in this flow
continuum (including subsurface pore water) is far less
uniform than what has been previously assumed in applying
Taylor dispersion theory to rivers, and this wide range of
velocities plays an important role in the stream transport of
solutes. The exchange with the hyporheic zone has been
shown to produce a consistent delay in solute transport
relative to the mainstream flow, leading to long tails (high
skewness) in time concentration breakthrough curves
(BTCs) for downstream transport [Nordin and Troutman,
1980; Bencala and Walters, 1983; Schmid, 2002; Wörman
et al., 2002].
[4] Various models have been proposed to reproduce the

non-Fickian behavior observed in the data. The most
commonly used formulation is the transient storage model
(TSM) proposed by Bencala and Walters [1983], which
idealizes the flow continuum as a two-layer system and
represents exchange between the surface and subsurface
flows in terms of a mass transfer coefficient,

@C

@t
þ U

@C

@x
¼ K

@2C

@x2
þ a CS � Cð Þ ð3Þ

@CS

@t
¼ a

A

AS

C � CSð Þ; ð4Þ

where C is now the concentration in the mainstream, CS is
the concentration in the storage zone, a is a mass transfer
coefficient with units of inverse time, and A/AS is the ratio
between the cross-sectional area of the stream and the
storage zone area. The TSM has been widely applied to
infer both in-stream and hyporheic transport properties by
fitting the results of solute injection experiments [e.g.,
Broshears et al., 1993; Harvey et al., 1996; Harvey and
Fuller, 1998; Fernald et al., 2001; Thomas et al., 2003].
While this model often provides an adequate description of
in-stream solute concentration data over a limited range of
timescales, it has been shown to generally underestimate the
slower exchange that occurs with deeper or longer
hyporheic flow paths [Wörman et al., 2002; Marion et al.,
2003; Zaramella et al., 2003]. Essentially, the first-order
mass transfer term in (3)–(4) assumes that the subsurface is
a well-mixed reservoir, while in reality hyporheic exchange
is generally characterized by strong spatial variations in the
subsurface [Marion and Zaramella, 2005a]. Therefore,
while the TSM still represents a practical tool for assessing
non-Fickian behavior in downstream solute transport, its
mathematical structure prevents it from providing a
comprehensive description of the hyporheic exchange
process. Models with a structure similar to the TSM [e.g.,
Castro and Hornberger, 1991; Hart, 1995] also have
similar limitations in the description of the hyporheic
exchange.
[5] More recently, efforts have been made to include a

wider range of exchange timescales in non-Fickian solute
transport models for rivers [Haggerty et al., 2000, 2002;
Wörman et al., 2002; Marion and Zaramella, 2005b]. The
mathematical structure of these models is similar to the
TSM but allows inclusion of various forms of the hyporheic
residence time distribution. That is,

@C

@t
þ U

@C

@x
� K

@2C

@x2
¼ Js; ð5Þ

where the solute exchange flux, Js, is explicitly related to
the water flux across the boundary, q, and the distribution of
solute residence times in the subsurface, f(T). This approach
gives rise to a convolution integral for the time history of in-
stream solute concentrations in terms of the hyporheic
residence time distribution [Elliott and Brooks, 1997]. The
most noteworthy feature of this type of approach is that it
can theoretically encompass any form of f(T), whereas the
TSM and related model frameworks implicitly assume an
exponential residence time distribution. Therefore this
approach essentially represents a generalization of the
TSM that allows a variety of hyporheic exchange processes
to be explicitly modeled by means of appropriate formula-
tions for q and f(T). For example, this type of model has
been employed with a physically based residence time
distribution for advective hyporheic exchange induced by
bedforms, and was shown to provide a much more realistic
description of the time history of solute concentrations in
the subsurface than the TSM [Wörman et al., 2002].
[6] Here we present an improved theoretical and practical

modeling approach for analysis of solute transport in rivers
based on continuous time random walk (CTRW) theory
[Montroll and Weiss, 1965; Scher and Lax, 1973]. This
approach has been recently applied to the transport of both
conservative and nonconservative substances in groundwa-
ter, and has been shown to provide a parsimonious descrip-
tion of the anomalous (non-Fickian) transport behavior that
occurs because of structural heterogeneities in porous media
[Berkowitz et al., 2006; Cortis et al., 2006]. Our application
to the case of rivers is conceptually similar to the
approaches of Wörman et al. [2002], Haggerty et al.
[2000, 2002], but it presents a number of advantages. First,
the CTRW approach does not require explicitly modeling
the mass balance between the surface and subsurface, as it is
based on a single equation for net downstream transport that
can include the effects of the full range of velocities found
in the flow continuum. This is conceptually important
because it avoids the artificial separation of the problem
at the stream channel boundary. Quantitatively, this ap-
proach is favorable because it provides a parsimonious
description of the transport behavior, as opposed to the
overparameterization that typically results from independent
representation of in-stream and subsurface mixing behavior.
Secondly, the CTRW approach provides a clear and well-
defined framework for representing the multiple scales of
transport found in heterogeneous and dynamic river sys-
tems, i.e., variability in stream flow, patterns of hyporheic
exchange, and heterogeneity in sediment properties. There-
fore this approach can readily be used to investigate the
combined effects of different transport processes over a
wide range of spatial and temporal scales.

2. Model

2.1. CTRW Theory

[7] The classical ADE can be obtained from conventional
random walk theory [see, e.g., Fischer et al., 1979]. In this
conceptual framework, mixing is envisioned as a sequence
of displacements of constant lengths that occur in random
directions and at regular time intervals, and the ADE arises
from the ensemble average over many individual transport
events. The symmetric concentration curves that are found
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from the ADE are essentially an outcome of the central limit
theorem when the transport behavior is averaged over travel
distances and times that are long relative to the scale of the
random walk. The difficulty presented by hyporheic ex-
change is that the exchange timescale can be so long that the
requisite averaging implicit in the ADE may not occur. In
this case, the resulting concentration curves will be asym-
metric, and sometimes strongly so, as described by Fischer
et al. [1979, p. 131]. This behavior can be represented by a
generalization of the random walk process, namely the
continuous time random walk (CTRW), which leads to a
new transport equation that includes the anomalous features
shown by the concentration breakthrough curves [Berkowitz
et al., 2006].
[8] Let us consider a particle that moves with a sequence

of random jumps with different lengths and durations. For
the sake of simplicity, a one-dimensional domain is consid-
ered. The length and duration of the particle jumps are
treated as random variables with a joint pdf Y(x, t), whose
marginal distributions are l(x) and y(t), respectively.
[9] An equation for the evolution of the particle position

is now derived. The following relationship holds:

p x; tð Þ ¼
Z t

0

w t � tð ÞR x; tð Þdt; ð6Þ

where p(x, t) is the probability for a particle be found at
position x at time t, R(x, t) is the probability for the particle
to be just arrived at the point x at time t, and

w tð Þ ¼ 1�
Z t

0

y tð Þdt ð7Þ

is the probability for a particle of not making a jump during
the interval t. Equation (6) simply states that a particle can
be found at x at time t if it arrived there at t and did not
jump away during the interval t � t.
[10] The starting point of this analysis is the probability for

a particle to be just arrived at the point x at time t after n + 1
jumps, which can be written as

Rnþ1 x; tð Þ ¼
Z t

0

Z þ1

�1
Y x� x0; t � t0ð ÞRn x0; t0ð Þdx0dt0; ð8Þ

where the relationship between R and Rn is simply

R x; tð Þ ¼
X1
n¼0

Rn x; tð Þ: ð9Þ

It is important to stress that the convolution integral over t0

in equation (8) allows for the possibility of very long times
to occur between consecutive particle jumps. Similarly, the
integral over x0 includes the possibility of particles making
very long jumps. This is significant because long holding
times and jump lengths both tend to favor anomalous
transport behavior.
[11] Without loss of generality, it can now be assumed

that the initial position of the particle at the instant t = 0 is
x = 0, that is, R0(x, t) = d(x)d(t). If the sum operator Sn = 0

1 is
applied to equation (8), it becomes

R x; tð Þ � d xð Þd tð Þ ¼
Z t

0

Z þ1

�1
Y x� x0; t � t0ð ÞR x0; t0ð Þdx0dt0

ð10Þ

or, recalling the definition of the Laplace transform, ~f (u) =R
0
+1 f (t)e�utdt,

~R x; uð Þ � d xð Þ ¼
Z þ1

�1
~Y x� x0; uð Þ~R x0; uð Þdx0: ð11Þ

[12] It is now possible to relate the equation in R(x, t) to
the desired statistical description of particle motion, p(x, t).
The Laplace transform of (6) can be written as

~R x; uð Þ ¼ u

1� ~y uð Þ
~p x; uð Þ: ð12Þ

This expression can be introduced in equation (11), thus
obtaining

u

1� ~y uð Þ
~p x; uð Þ � d xð Þ ¼

Z þ1

�1

u~Y x� x0; uð Þ
1� ~y uð Þ

~p x0; uð Þdx0 ð13Þ

and, after subtracting u~y(u)~p(x, u)/(1 � ~y(u)),

u~p x; uð Þ � d xð Þ ¼
Z þ1

�1

u~Y x� x0; uð Þ
1� ~y uð Þ

~p x0; uð Þdx0

� u~y uð Þ
1� ~y uð Þ

~p x; uð Þ: ð14Þ

[13] If now we make use of the identity

~y uð Þ ¼
Z þ1

�1
~Y x0 � x; uð Þdx0; ð15Þ

it is then possible to write equation (14) as

u~p x; uð Þ � d xð Þ ¼
Z þ1

�1

u~Y x� x0; uð Þ
1� ~y uð Þ

~p x0; uð Þdx0

�
Z þ1

�1

u~Y x0 � x; uð Þ
1� ~y uð Þ

~p x; uð Þdx0 ð16Þ

or, after the application of the inverse Laplace transform,

@p x; tð Þ
@t

¼
Z þ1

�1

Z t

0

F x� x0; t � t0ð Þp x0; t0ð Þdx0dt0

�
Z þ1

�1

Z t

0

F x0 � x; t � t0ð Þp x; t0ð Þdx0dt0 ð17Þ

where

~F x; uð Þ ¼ u~Y x; uð Þ
1� ~y uð Þ

: ð18Þ

[14] Equation (17) is known as the generalized master
equation (GME) [Klafter and Silbey, 1980], and it describes
the evolution in time of the particle distribution p(x, t).
When the particles represent a dissolved tracer moving in a
stream, the pdf p(x, t) can also be interpreted as a normal-
ized tracer concentration, C(x, t). The two terms on the
right-hand side term of (17) represent the rates of particles
arrival and departure from the location x, respectively. The
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equation is nonlocal in both space and in time, and the
function F(x, t) in the convolution integrals is often referred
to as a memory function. The presence of this convolution
implies that the concentration can vary in response (1) to the
concentration at distant points, when particles make long
jumps and (2) to the concentration at a wide range of
previous times, when particles make slow transitions. The
actual importance of these two mechanisms is related on
the precise form of F(x, t), which in turn depends solely on
the pdf Y(x, t) according to equation (18).
[15] The GME (17) can be used to derive a partial

differential equation that is a more general form of the
ADE. The first step is replacing the pdf, p(x, t), with the
tracer concentration, C(x, t), and expanding it in a Taylor
series. This can be done provided that the concentration,
C(x, t), varies smoothly in space. For the sake of conve-
nience, this operation is performed in the Laplace space:

~C x0; uð Þ ’ ~C x; uð Þ þ @ ~C x; uð Þ
@x

x0 � xð Þ þ 1

2

@2 ~C x; uð Þ
@x2

x0 � xð Þ2:

ð19Þ

[16] After the substitution of this expansion, the Laplace-
transformed GME (16) becomes

u~C x; uð Þ � d xð Þ ¼
Z þ1

�1
~F x� x0; uð Þ x0 � xð Þ @

~C x; uð Þ
@x

dx0

þ
Z þ1

�1
~F x� x0; uð Þ x0 � xð Þ2

2

@2 ~C x; uð Þ
@x2

dx0:

ð20Þ

[17] In the time domain, this equation is

@C x; tð Þ
@t

¼ �
Z t

0

U* t � t0ð Þ @C x; t0ð Þ
@x

dt0

þ
Z t

0

K* t � t0ð Þ @
2C x; t0ð Þ
@x2

dt0; ð21Þ

where

U* tð Þ ¼
Z þ1

�1
xF x; tð Þdx ð22Þ

K* tð Þ ¼ 1

2

Z þ1

�1
x2F x; tð Þdx ð23Þ

are an apparent velocity and dispersion coefficient,
respectively. Both of these parameters exhibit time-
dependent behavior that is related to the jump pdf, Y(x, t),
as a consequence of equation (18). Thus Y(x, t) fully
describes the characteristics of the transport process, and
equation (21) represents a generalized form of the ADE for
arbitrary Y(x, t). In fact the ADE represents a special case of
equation (21) with y(t) as a Dirac delta function, and the
TSM is equivalent to this plus a second term containing an
exponential distribution. CTRW theory has been used to
explain the well-known scaling of dispersivity that has been
observed in field experiments of groundwater transport [see
Berkowitz et al., 2006, and references therein]. Here we

apply this approach to assess the effects of various forms of
hyporheic exchange and subsurface structure on down-
stream solute transport.
[18] Let us nowmake some reasonable assumptions on the

nature of the jump pdf Y(x, t) for modeling hyporheic
exchange in order to further simplify equation (21). In
particular, let us consider the uncoupled jump pdf Y(x, t) =
l(x)y(t). This choice implies that the lengths of the jumps of
the particles are independent from their duration. This will
often be a good assumption for representing hyporheic
exchange because pore water velocities are normally so
slow that subsurface transport distances will generally be
short relative to in-stream transport distances. The signifi-
cance of this hypothesis in the context of the hyporheic
exchange induced by bedforms is discussed in section 2.2.
The assumption of the decoupled pdf allows to rewrite
(22)–(23) as

U* tð Þ ¼ M tð Þ 
 UY ð24Þ

K* tð Þ ¼ M tð Þ 
 KY; ð25Þ

where

~M uð Þ ¼ u�t
~y uð Þ

1� ~y uð Þ
ð26Þ

is a memory function, �t is a characteristic timescale, and

UY ¼ 1

�t

Z þ1

�1
xl xð Þdx ð27Þ

KY ¼ 1

2�t

Z þ1

�1
x2l xð Þdx ð28Þ

are the time-invariant velocity and dispersion coefficient,
respectively, over the averaging timescale �t. The choice of
the averaging time is then critical and an appropriate choice
must be made on the basis of the characteristics of the
system of interest. Here a distinction is made on the basis of
the fact that transport in the water column is typically much
faster than in the subsurface (see section 2.2). With this
simplification, the final form of the partial differential
equation (21) is then

@C x; tð Þ
@t

¼
Z t

0

M t � t0ð Þ �UY
@C x; t0ð Þ

@x
þ KY

@2C x; t0ð Þ
@x2

� �
dt0:

ð29Þ

[19] The expression (29) represents the desired equation
for the evolution of the in-stream concentration distribution.
Its structure is analogous to the ADE, but with the addition
of a convolution integral with the memory function, M(t).
This memory function depends uniquely on the time pdf,
y(t), while the other two parameters, UY and KY, are given
by the first moments of the length pdf l(x). The use of
equation (29) only requires the first two spatial moments of
l(x) to be finite, as described by (27)–(28). This is usually
expected to be true, as molecular interactions restrict solute
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and particle to finite displacement. However, the CTRW
approach can also be used with infinite values for the
moments of l(x), in which case the spatial derivatives of
equation (29) become of fractional order [Metzler and
Klafter, 2000].
[20] The anomalous, non-Fickian behavior arises because

of the convolution integral in (29). The presence of this
integral implies that the equation is nonlocal in time
whenever the time pdf, y(t), includes a wide range of
timescales. Memory functions have already been used to
model the exchange between streams and hyporheic zones
[Elliott and Brooks, 1997; Haggerty et al., 2000, 2002;
Marion and Zaramella, 2005b], and the CTRW approach
provides the theoretical tools to relate the anomalous
behavior of the solute BTC to the multiple timescales of
the flow.

2.2. Application to the Stream Transport of Solutes

[21] The theory of the CTRW is now applied to the case
of the transport of solutes in a river reach. Solutes being
carried downstream repeatedly enter and leave the hypo-
rheic zone, thereby becoming subject to a much wider range
of velocities than found within the stream channel, and
resulting in a decrease in their average travel speed. In the
CTRW framework, this process can be interpreted as a
series of displacements with different traveltimes. The jump
pdf Y(x, t) that characterize these displacements must be
estimated in order to apply the CTRW approach.
[22] Let us focus on the hyporheic exchange induced by

the presence of dunes on a streambed composed of moder-
ately permeable sediments such as sand or gravel. In this
case there will be a significant flux of water between the
surface and subsurface, and yet the fact that there will be a
great difference in velocity between the mainstream and the
hyporheic zone means that the transport can be described by
a decoupled jump pdf, Y(x, t) = l(x)y(t). Essentially, solutes
travel a much shorter distance in the hyporheic zone than in
the mainstream during the same amount of time. Thus
displacements in the subsurface can be neglected in com-
parison to those in the river, and the length pdf, l(x), can
thus be assumed to depend only on the characteristics of the
mainstream flow, without any significant influence due to
the exchange with the hyporheic zone. On the other hand,
solute traveltime greatly depends on the time spent in the
subsurface, and the time pdf, y(t), is strongly influenced by
the long residence times in the hyporheic zone. In other
words, the effect of the hyporheic zone is simply to retain
solutes for a certain amount of time. This approach has
generally been adopted for analysis of hyporheic exchange
[e.g., Bencala and Walters, 1983; Hart, 1995; Wörman et
al., 2002; Haggerty et al., 2002]. The choice of a decoupled
jump pdf Y(x, t) = l(x)y(t) is thus justified, and the problem
is reduced to the estimation of the two pdfs l(x) and y(t).
[23] The length pdf, l(x), is assumed to be controlled

only by the characteristics of the open-channel river flow.
The moments of this pdf determine the transport velocity,
UY, and the dispersion coefficient, KY, through equations
(27)–(28). Therefore these two parameters depend only on
the velocity profile of the river, as described by the classical
theory of [Taylor, 1954]. This assumes that the hyporheic
exchange does not have a significant effect on the overlying
velocity field, which is likely the case for the types of

sediments considered here. Therefore the model here can be
considered to be semicoupled in the sense that hyporheic
exchange is presumed to be induced by the streamflow but
to not significantly influence the overlying free-surface flow
field. In this case, the transport velocity will be equal to the
cross-sectional average river velocity, UY = U, and the
dispersion coefficient can be estimated with the traditional
expressions [Fischer et al., 1979]. According to Taylor
dispersion theory, the ADE only applies after the solute
has spread throughout the entire cross section and has
completely sampled the transverse velocity profile. The
same requirement applies for (29), because in the CTRW
it is still required that there has been a sufficient mixing
distance for the solute to sample the entire distribution l(x).
[24] The time pdf, y(t), represents the distribution of

downstream traveltimes t. This distribution includes both
the time spent in the main channel and the time spent in the
hyporheic zone. The time spent in the channel is described
by a pdf, y0(t), whose mean value is the average traveltime
in the reach, �t = x/U. This pdf is narrow if compared to the
wide range of residence times in the hyporheic zone. Let us
now define the exchange rate, L, as the probability per unit
time that a particle enters the hyporheic zone, and the
residence time distribution, 8(t), as the pdf of traveltimes
in the subsurface. Both quantities can be obtained from the
physically based models of hyporheic exchange [e.g., Elliott
and Brooks, 1997; Packman et al., 2000; Packman and
Brooks, 2001; Boano et al., 2007; Cardenas, 2007]. The
total time spent in the hyporheic zone also depends on
the frequency with which solutes enter the subsurface. The
probability that a tracer particle enters the hyporheic zone a
certain number of times can be described by a Poisson
process with a probability per unit time L. Each time the
particle enters the hyporheic zone, it is retained for a
time that is randomly extracted from 8(t). In their work,
Margolin et al. [2003] have used the same approach to
model adsorption/desorption behavior, and have derived an
analytical expression for the overall time pdf, y(t). In
Laplace space, this equation reads

~y uð Þ ¼ ~y0 uþ L� L~8 uð Þ½ �: ð30Þ

[25] Equation (30) has also been successfully applied by
Cortis et al. [2006] to obtain a generalized CTRW filtration
model for colloid transport in porous media involving
multiple deposition/resuspension events. This expression
links the overall time pdf, y(t), with the characteristics
of hyporheic exchange, L and 8(t). When the exchange
rate L ! 0, only a small fraction of the solute mass enters
the hyporheic zone and the overall time pdf reduces to the
one for in-stream transport, ~y(u) � ~y0(u). On the other
hand, when L > 0, since the residence time pdf 8(t) is
usually much wider than the y0(t), the effect of the
hyporheic exchange is to broaden the range of timescales
that characterize the transport of solutes. It should be noted
here that a wide y(t) is exactly the cause of non-Fickian
transport [Berkowitz et al., 2006].
[26] Once the function ~y(u) is known, it can be intro-

duced into equation (26) to derive the memory function,
M(t). This function, together with the transport velocity, UY,
and the dispersion coefficient, KY, completes the set of the

W10425 BOANO ET AL.: A CTRW APPROACH TO STREAM TRANSPORT

5 of 12

W10425



parameters required to apply the generalized form of the
ADE, equation (29).

3. Examples

[27] Several examples are used to illustrate the applica-
tion of the CTRW to assess the effects of hyporheic
exchange on downstream solute transport in rivers. First,
the case of a river with bedforms of regular geometry is
simulated, and then the additional complexities arising from
irregular bedforms and heterogeneous sediments are con-
sidered in order to show how these aspects can easily be
incorporated in the CTRW approach.

3.1. Regular Bedforms

[28] Simulations are performed for a uniform stream with
depth d = 0.5 m, mean velocity U = 0.5 m/s, and dispersion
coefficient K = 11 m2/s. The river bed is considered to be
covered with dunes with constant height, H = 0.1 m, and
with a wavelength-to-height ratio L/H = 2p. The bed sedi-
ments are considered to be homogeneous and isotropic with

a hydraulic conductivity and porosity of K = 5 
 10�3 m/s
and n = 0.3, respectively. These values are representative of
a mixture of sand and gravel. The application of the
advective pumping model [Elliott and Brooks, 1997] to this
case reveals that the exchange flux per unit bed area is q =
5 
 10�2 L/(s m2), and the subsurface residence time
distribution, 8(t), has the form shown in Figure 1. Note
that the advective hyporheic exchange induced by bedforms
involves a wide range of subsurface traveltimes. In fact the
residence time distribution shows classic ‘‘long tail’’
behavior, decaying as a power law, 8(t) � t�2. The
exchange rate, L, is evaluated as the ratio between
the hyporheic flux exchanged per unit bed area and the
volume of the water column over the same area, that is, L =
q/d = 9 
 10�5 s�1, where d is the stream depth.
[29] The injection of a conservative tracer at a constant

rate for two hours is simulated, and the resulting concen-
tration distribution is evaluated x = 1 km downstream from
the source. This distance is sufficient to provide complete
mixing across the river cross section, as required for the
application of the ADE as well as for equation (29). The
characteristic traveltime to traverse the reach is �t = x/U =
2000 s. The in-stream traveltime distribution is represented
with an exponential pdf having a mean value �t, y0(t) =
exp(�t/�t)/�t. It can be shown that the exact shape of y0(t)
does not influence the results, provided that the width of
y0(t) is much smaller than that of 8(t). Hence any short-
tailed distribution for y0(t) having an appropriate average
can be adopted. It should be noted that the introduction of
an exponential pdf in equation (26) leads to M(t) = d(t),
which would reduce equation (29) to the ADE in the
absence of hyporheic exchange.
[30] The length of the reach is much longer than the

bedform wavelength, providing the opportunity for solutes
to repeatedly enter the hyporheic zone as they traverse the
reach. The overall time pdf, y(t), is obtained using
equation (30), and the consequent memory function,
M(t), is evaluated by means of equation (26). It is thus
possible to apply the CTRW equation (29) to the hyporheic
exchange problem using the solution method described by
Cortis and Berkowitz [2005]. The resulting in-stream con-
centration distribution is presented in Figure 2a, where the

Figure 1. Residence time distribution for a single travel in
the hyporheic zone.

Figure 2. In-stream solute concentration distribution 1 km downstream of the injection point, obtained
with the ADE (dashed line) and the CTRW (solid line). (a) Complete curve and (b) detail of the tail.
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breakthrough curve obtained with the ADE is also shown
for comparison. Note that solute concentrations have been
normalized with the maximum concentration, C0.
[31] The comparison between the two curves in Figure 2a

shows that hyporheic exchange produces a delay in the
arrival of solutes and a longer tail in the breakthrough curve.
The tailing behavior can more easily be seen when plotted
on a logarithmic scale, Figure 2b. These effects are due to
the long retention times associated with the hyporheic
exchange, and the results agree with the observations from
field tests and predictions of other models [Bencala and
Walters, 1983; Hart, 1995; Wörman et al., 2002]. In
particular, the kind of decay agrees with the solute injection
results obtained by Haggerty et al. [2002], who observed
that hyporheic exchange gives rise to breakthrough curves
with a power law tail. It should be stressed that the precise
shape of the BTC, e.g., the power law exponent of the tail,
depends on the exact type of residence time pdf, 8(t).
[32] A bed of infinite depth is here considered, but the

model can easily be extended to include a shallow imper-
meable layer [Packman et al., 2000; Zaramella et al., 2003].
The introduction of an impermeable layer would actually
introduce a cutoff time, T, in the residence time pdf. In this
case the BTC tail would show a power law behavior only
for t < T, and then it would switch back again to the
classical, faster decay (as for the ADE). This transition
between anomalous and normal behavior can be predicted
by the CTRW model [see Dentz et al., 2004, Figure 14].

3.2. Distribution of Bedform Sizes

[33] The model is now applied to a river whose bed is
covered with a series of bedforms of different sizes. The
range of bedform heights is described by a pdf, p(H), while
the wavelength-to-height ratio is considered to remain
constant. The exchange induced by each bedform is as-
sumed to be independent, with each one inducing an
exchange flux that depends on its height and on the stream

characteristics [Elliott and Brooks, 1997; Boano et al.,
2007]

q ¼ kKh0

p
; ð31Þ

where k = 2p/L is the dune wave number, L is the dune
wavelength, and

h0 ¼ 0:28
U2

2g

H=d

0:34

� �m

m ¼ 3=8 H=d < 0:34
3=2 H=d > 0:34:

�
ð32Þ

[34] Because the exchange flux varies with bedform
height, solutes have different probabilities of entering the
different bedforms. The pdf of bedform heights, p(H), can
be converted into a pdf of hyporheic fluxes

p qð Þ ¼ p Hð Þ 
 dq

dH

� ��1

; ð33Þ

where the derivative dq/dH can is obtained from (31)–(32).
[35] It is now possible to define a flux-averaged residence

time distribution as

8 tð Þ ¼

Z þ1

0

q8 tjqð Þp qð Þdq

�q
; ð34Þ

where 8(tjq) is the residence time pdf for a bedform that
induces the exchange flux q, and �q =

R
0
+1 q p(q)dq is the

average exchange flux. The resulting average residence time
pdf, 8(t), and the average exchange rate, L = �q/d, can then
be introduced in equation (29) to evaluate the breakthrough
curve at the end of the reach.
[36] In the present example, a lognormal pdf, p(H) is

adopted to describe the distribution of bedform heights. The
mean bedform height is taken to be identical to that used in
the previous example, �H = 0.1 m. The standard deviation,
sH, is varied to investigate the importance of the irregular-
ities of the bedforms on the breakthrough curve. In order to
consider a range of bedform sizes that is physically reason-
able, the pdf has been cut off between a minimum and
maximum size, H1 = 0.5 cm and H2 = 30 cm, respectively.
The values of all other parameters are the same as used in
the previous example (see section 3.1).
[37] The average residence time distributions, 8(t), for

different values of the ratio sH/ �H are shown in Figure 3.
The case of regular bedforms is also included for compar-
ison. Figure 3 shows how the variance of the average
residence time pdf, 8(t), increases when the streambed is
covered by bedforms with different sizes. Because of the
skewed shape of the lognormal pdf p(H), smaller bedforms
(and thus shorter retention times) become more prevalent
when the coefficient of variation sH/ �H increases.
[38] The effects of the different distributions of dune

heights on the breakthrough curve are shown in Figure 4a.
The breakthrough curves show increasing deviation from
the regular bedform case for increasing coefficient of
variation of the bedform size distribution, sH/ �H . However,
these differences are not very large, because the range of
residence times produced by the average dune size is

Figure 3. Comparison between the hyporheic residence
time distribution for a single bedform (solid line) and for a
distribution of dune heights with sH/ �H = 1 (dashed line) and
sH/ �H = 5 (dash-dotted line).
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already so wide that it is not greatly modified by the
presence of different bedform sizes. This behavior indicates
that the mean bedform height, �H , will often provide a
reasonable estimate of the hyporheic exchange, as previ-
ously suggested by Packman et al. [2000]. The break-
through curves also become increasingly closer to the
ADE case with higher sH/ �H . This behavior can be more
clearly observed looking at the tails of the concentration
curves in Figure 4b. This is due to the increasing importance
of the shorter exchange timescales and the resulting faster
release of solutes to the mainstream. This behavior depends
on the shape of the specific distribution that has been
assumed for p(H).

3.3. Small-Scale Heterogeneities

[39] In the previous examples, sediments were considered
to be homogeneous, but here we investigate the effects of
sediment heterogeneity. We focus specifically on the case of
heterogeneities whose correlation length is much smaller
than the bedform wavelength. In this case, the shape of the
hyporheic flow paths is not significantly altered by the
variations of the hydraulic conductivity, but the heteroge-
neity does influence the traveltime along each flow path.
[40] The residence time pdf in the hyporheic zone, 8(t), is

thus given by

8 tð Þ ¼
Z t

0

8�K t � tð Þf tð Þdt; ð35Þ

where 8�K(t) is the residence time pdf for a homogenous
hyporheic zone with mean hydraulic conductivity �K, and
f(t) is the pdf of the delay times due to the variation of
hydraulic conductivity around the mean.
[41] Again we consider a river with the same character-

istics as in the example of section 3.1, but with heteroge-
neous sediments.
[42] A number of functions have been proposed to model

the heterogeneities of sand and gravel sediments [Berkowitz
et al., 2006]. The type of model function for f(t) should be

chosen according to the available knowledge of the prop-
erties of the sediments. In this analysis, a truncated power
law (TPL) expression has been adopted

f tð Þ ¼ 1

t2 G �b; t1=t2ð Þ
e� tþt1ð Þ=t2

1þ t=t1ð Þ1þb ; ð36Þ

where t1 and t2 are two cutoff times, G(a, x) is the
incomplete Gamma function [Abramowitz and Stegun,
1965], and b is an exponent that is related the degree of
heterogeneity of the sediments. The TPL displays a power
law behavior, f(t) � t�1�b, for t1 < t < t2, and it switches to
an exponential decay for t > t2. A homogeneous medium is
characterized by b = 2, and lower values of b are typical of
more heterogeneous systems [Cortis and Berkowitz, 2004;
Jiménez-Hornero et al., 2005]. The transition to the
exponential behavior occurs when the length of travel is
much longer than the correlation scale of the sediment
structure. In this case, the flow field has adequately sampled
the entire distribution of hydraulic conductivity, and its
motion is then the same as in an equivalent homogeneous
medium.
[43] This indicates that the correlation length scale of the

heterogeneities, ‘, should be much smaller than the dune
wavelength in order to avoid altering the shape of the flow
paths. Since the dune wavelength is about 60 cm, it has
been assumed that ‘ is on the order of millimeters. The
characteristic pore fluid velocity, u0 = kKh0/q, is of the order
of 10�4 m/s at the streambed surface, and it decreases
exponentially with the depth [Elliott and Brooks, 1997].
Therefore it is assumed that t1 > ‘/u0 � 10 s. Similarly, the
effects of heterogeneity will disappear after a travel distance
of �100 ‘, or t2 � 103 s. Because little information is
available to constrain the choice of the CTRW variables, we
perform a parametric study on the influence of the values of
t1, t2, and b, and thus of the shape of f(t).
[44] The effect of sediment heterogeneity on the overall

residence time pdf 8(t) is illustrated in Figure 5. Figure 5
shows how the residence time pdf for the homogeneous bed,

Figure 4. Comparison of the in-stream concentrations 1 km downstream of the injection point for the
case of no hyporheic exchange (solid line), regular bedforms (dash-dotted line), and a distribution of dune
heights with sH/ �H = 1 (dotted line) and sH/ �H = 5 (dashed line). (a) Complete curve and (b) detail of the
tail.
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8�K(t), is transformed because of the presence of hetero-
geneities characterized by the delay time pdf, f(t). In this
example f(t) is a TPL with t1 = 103 s, t2 = 106 s, and b =
1.2. It can be observed that the range of retention times,
represented by the length of the tail of 8(t), is broadened by
the introduction of the heterogeneities. This happens when-
ever the characteristic timescale of f(t) approaches that of
8�K(t).

[45] The effect of t1 is illustrated in Figure 6, for the case
of t2 = 106 s and b = 1.2. The chosen value of b is
representative of weak heterogeneity, and the value of t2
is higher than the total duration of the observations. The
time to peak and extent of the tail both increase as t1
increases. This indicates that subsurface heterogeneities
can increase the retention of the solutes in the hyporheic
zone, and amplify the effect of the hyporheic exchange on
downstream solute transport.
[46] Figures 7 and 8 show the influence of different

values of t2 and b, respectively. While t2 has a negligible
influence, b significantly modifies the shape of the in-
stream breakthrough curve. The values b = 1.2 and b =
0.6 adopted in Figure 8 are representative of weak and
strong heterogeneities, respectively, so the deviation from
the homogeneous case increases as b decreases.

4. Conclusions

[47] The flow continuum in rivers includes both the
overlying free-surface flow and underlying pore fluid flow,
and therefore encompasses an extremely wide spectrum of
advective velocities. The entire range of velocities influen-
ces solute transport in river corridors, but established
methods for assessing downstream solute transport typically
consider only a limited range of transport timescales, either
those associated with the open-channel velocity distribu-
tions that give rise to classic in-stream dispersion [Taylor,
1954; Fischer et al., 1979], or the somewhat wider range of
timescales associated with first-order transient storage be-
havior [e.g., Bencala and Walters, 1983; Packman and
Bencala, 2000]. Here we have presented an improved
modeling approach for representing the multitude of time-
scales found in rivers on the basis of continuous time
random walk theory, which envisions transport as a sto-
chastic process involving a series of transport steps having

Figure 5. Residence time distribution for a heterogeneous
bed 8(t) (solid line), resulting from the convolution of the
residence time pdf for a homogeneous bed 8�K(t) (dotted
line) with a delay time pdf for heterogeneity f(t) in the form
of a TPL with t1 = 103 s, t2 = 106 s, and b = 1.2 (dashed
line).

Figure 6. Comparison of in-stream concentration distribu-
tions 1 km downstream of the injection point for the cases
of no hyporheic exchange (solid line), homogeneous
sediments (dash-dotted line), and heterogeneous sediments
characterized by a TPL with t1 = 103 s (dotted line) and t1 =
104 s (dashed line); t2 = 106 s and b = 1.2 in both cases.

Figure 7. Comparison of the in-stream concentration
distributions 1 km downstream of the injection point for
the cases of no hyporheic exchange (solid line), homo-
geneous sediments (dash-dotted line), and heterogeneous
sediments characterized by a TPL with t2 = 103 s (dotted
line) and t2 = 105 s (dashed line); t1 = 102 s and b = 1.2 in
both cases.
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different lengths and durations. The CTRW model allows
the evolution of a solute concentration distribution to be
described with a single partial differential equation that
includes the effects of both in-stream and subsurface trans-
port. This calculation involves a convolution of the trans-
port term with a memory function that can represent a very
wide range of transport timescales. In addition to being able
to represent standard advection-dispersion and transient
storage behavior, the governing equation can also represent
transport behavior that is nonlocal in time when the memory
function has a sufficiently wide distribution (i.e., a long
tail). The CTRW approach is thus a highly suitable theoret-
ical framework for the analysis of transport problems in
rivers, and it offers very particular advantages for modeling
the effects of surface-subsurface interactions on downstream
transport.
[48] The major advantage of the proposed model is that it

allows to predict the in-stream breakthrough curves without
the need for parameter calibration through curve fitting. The
values of the CTRW model parameters can be obtained
from the upscaling of the local residence time pdfs. The
upscaling approach requires making measurements in order
to characterize both the boundary morphology and subsur-
face properties, e.g., hydraulic conductivity and bedform
geometry. Further confidence in the model performance can
be obtained by directly measuring solute concentrations in
the subsurface, but this is already recommended [Harvey
and Wagner, 2000]. Thus a wide variety of different
transport and storage processes at different scales can be
implemented in the CTRW approach, provided that the
associated exchange fluxes and residence timescales can
be characterized. The combined action of exchange induced
by different processes over a wide range of spatial scales
results in very wide residence time pdfs [Wörman et al.,
2007], and tend to produce power law tailed breakthrough

curves [Haggerty et al., 2002; Kirchner et al., 2000]. The
precise shape of the breakthrough curve, as well as the slope
of its tail, therefore depends on the overall effect of all the
involved transport and retention processes.
[49] The capability of the model was illustrated by means

of a series of examples. Simulations of advective hyporheic
exchange induced by bedforms clearly demonstrate that the
wide range of timescales associated with advective pore
water transport produces strong asymmetry (long tails) in
in-stream breakthrough curves. This anomalous behavior
arises whenever the waiting time distribution is wider than
the typical advective timescale. The CTRW framework also
provides the capability to assess additional complexities
such as spatial variability in bedform size and local hetero-
geneity in the bed sediments. These and other similar effects
can be represented by convolving suitable descriptions of
these behaviors into the transition probability distribution
that defines the memory function. Including a reasonable
distribution of bedform sizes in the simulations did not have
a substantial effect on the range of exchange timescales
because the variability in bedform geometry was much less
than the extent of variability in pore fluid velocity under a
single bedform. This result indicates that net downstream
transport should often be able to be predicted well using
measures of average bed roughness, as suggested previously
by Packman et al. [2000]. Subsurface heterogeneity was
found to have a much more significant effect on solute
transport because the delay times associated with regions of
low permeability can greatly extend subsurface residence
time distributions.
[50] Here parameter combinations typical of lowland,

sand bed rivers have been used. These cases are favorable
for initial consideration because the permeability of sands
limits pore water velocities and thereby allows the transport
behavior to be analyzed in a semicoupled fashion; that is,
the occurrence of hyporheic exchange does not have an
appreciable effect on the overlying stream flow, and also
transport distances in the subsurface are insignificant rela-
tive to those in the free-surface flow. Further, sand beds tend
to be only weakly heterogeneous, which allows the effects
of heterogeneity to be completely represented by means of
an independent delay time distribution. In other words, in
this case heterogeneity does not change the pattern of pore
water flow, but only broadens the time distribution for travel
along each flow path. Coarser and more heterogeneous
sediments are expected to show more complex behavior
requiring more detailed analysis of the coupling between the
overlying flow, the pore flow field, and the sediment
structure. This can be done by means of suitable numerical
models [e.g., Salehin et al., 2004; Saenger et al., 2005], but
it is generally difficult to obtain sufficient information on
subsurface structure and transport in coarse streambed sedi-
ments to support detailed analysis of these types of streams.
[51] It is important to note that the effects of surface-

subsurface interactions are completely parameterized in the
CTRW model in terms of the boundary exchange flux and
the subsurface residence time distribution. Both of these
quantities can be estimated as a function of the overlying
flow conditions and streambed morphology using a variety
of physically based models that have been developed in the
past decade, and they can also be measured in situ [Harvey
and Wagner, 2000; Wörman et al., 2002]. The CTRW

Figure 8. Comparison of the in-stream concentration
distributions 1 km downstream of the injection point for
the cases of no hyporheic exchange (solid line), homo-
geneous sediments (dash-dotted line), and heterogeneous
sediments characterized by a TPL with b = 1.2 (dotted line)
and b = 0.6 (dashed line); t1 = 103 s and t2 = 106 s in both
cases.
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approach can also be easily extended to consider other
mechanisms of hyporheic exchange and in-stream storage,
as soon as sufficient information becomes available to allow
adequate parameterization of these processes. Finally, the
CTRW approach has also been successfully applied to
represent the effects of various local-scale biological and
physicochemical interactions between mobile substances
and stationary solid phases, such as adsorption/desorption
of contaminants and attachment/detachment of pathogens
[Margolin et al., 2003; Cortis et al., 2006]. These local-
scale processes can be included in a reach-scale CTRW
model in exactly the same manner that the effects of local-
scale heterogeneities were incorporated here. The model
thus provides an extremely flexible framework for analyz-
ing the transport of a wide variety of substances in streams
and rivers.
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